(anti−Ω × Σz)-based k-set Agreement Algorithms

نویسندگان

  • Zohir Bouzid
  • Corentin Travers
چکیده

This paper considers the k-set agreement problem in a crash-prone asynchronous message passing system enriched with failure detectors. Two classes of failure detectors have been previously identified as necessary to solve asynchronous k-set agreement: the class anti-leader anti−Ω and the weak-quorum class Σk. The paper investigates the families of failure detector (anti−Ωx)1≤x≤n and (Σz)1≤z≤n. It characterizes in an n processes system equipped with failure detectors anti−Ω and Σz for which values of k, x and z k-set-agreement can be solved. While doing so, the paper (1) disproves previous conjunctures about the weakest failure detector to solve k-set-agreement in the asynchronous message passing model and, (2) introduces the first indulgent algorithm that tolerates a majority of processes failures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakest failure detectors via an egg - laying simulation ( Preliminary Version ) Antonio

In the k-set agreement task, n processes propose values, and have to decide on at most k of these values. In particular, consensus is 1-set agreement. In PODC 2008 Zieliński showed that the anti−Ω failure detector is necessary and sufficient to solve (n − 1)-set agreement in an asynchronous read/write shared memory system where at most t processes can fail by crashing, t = n− 1. In this paper i...

متن کامل

An asymptotic bound on integer sums of squares

Let σZ(k) be the smallest n such that there exists an identity (x1 + x 2 2 + · · ·+ xk) · (y 1 + y 2 + · · ·+ y k) = f 1 + f 2 + · · ·+ f n , with f1, . . . fn being polynomials with integer coefficients in the variables x1, . . . , xk and y1, . . . , yk. We prove that σZ(k) ≥ Ω(k).

متن کامل

An Asymptotic Bound on the Composition Number of Integer Sums of Squares Formulas

Let σZ(k) be the smallest n such that there exists an identity (x 1 + x 2 2 + · · · + x 2 k) · (y 2 1 + y 2 2 + · · · + y 2 k) = f 2 1 + f 2 2 + · · · + f 2 n , with f1, . . . , fn being polynomials with integer coefficients in the variables x1, . . . , xk and y1, . . . , yk. We prove that σZ(k) ≥ Ω(k 6/5).

متن کامل

Introduction to Ergodic theory

Let Σ be a finite set. Recall from the previous setup that we have an abelian group G acting on the set Σ of functions G→ Σ. For a function ω ∈ Σ, this G-action is given by (g · ω)(h) = ω(g + h), h ∈ G For today, G = Z, the integers with the group operation of addition. We will think of Z as parametrizing the action of time. We set Ω := ΣZ. We would like to put an interesting metric on Ω, to st...

متن کامل

The Sum Graph of Non-essential Submodules

Throughout this paper, R will denote a commutative ring with identity and M is a unitary R- module and Z will denote the ring of integers. We introduce the graph Ω(M) of module M with the set of vertices contain all nontrivial non-essential submodules of M. We investigate the interplay between graph-theoretic properties of Ω(M) and algebraic properties of M. Also, we assign the values of natura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010